Jak ustawić w mikroskopie oświetlenie metodą Koehlera?

Ustawienie oświetlenia wg metody Koehlera jest podstawową  czynnością  użytkownika mikroskopu, która zapewnia właściwe oświetlenie preparatu. Zasada oświetlenia Koehlera wzięła swą nazwę od nazwiska wynalazcy Augusta Koehlera (1866-1948). Metoda ta została opisana w 1893 roku, kiedy większość mikroskopów opierała się na lustrach i lampach gazowych jako źródłach oświetlenia.

Ustawienie oświetlenia wg zasady Koehlera powinno być rutynowo wykonywane jako część ustawiania mikroskopu. Wielu użytkowników mikroskopu nie stosuje go myśląc, że jego ustawienie jest złożone i czasochłonne. W rzeczywistości wymaga jedynie używania dwóch elementów mikroskopu: kondensora z jego przysłoną ( przysłona aperturowa) i przysłony polowej znajdującej się tuż nad źródłem światła, i zajmuje nie więcej niż dwie minuty. Prawidłowo ustawione oświetlenie w mikroskopie daje obraz  mikroskopowy o jednolitym kontraście a także wyższej rozdzielczości – dający więcej szczegółów.

Uwaga: nie wszystkie mikroskopy posiadają przesłonę polową

Etapy ustawiania oświetlenie metoda Koehlera:

  1. Ustawić ostry obraz preparatu mikroskopowego pod obiektywem 10x. Otwórz maksymalnie przysłonę aperturową (przysłona ta znajduje się pod stolikiem, w kondensorze)  Zamknij przysłonę polową, która znajduje się w podstawie nad źródłem światła (powierzchnia zmatowiona soczewki, na której rozprasza się światło żarówki)  w mikroskopie w układzie prostym lub nad kondensorem w mikroskopie odwróconym. Kiedy spojrzysz przez okulary, zobaczysz w obrazie preparatu małe oświetlone koło, czasami o nieostrych krawędziach (rysunek 1)
Rys 1 Obraz mikroskopowy z nieostrym brzegiem przysłony polowej.

2. Ustaw właściwą wysokość kondensora. Pokrętła regulacyjne kondensora znajdują się zwykle tuż przy pokrętłach ostrości, najczęściej z lewej strony mikroskopu pod stolikiem. Powoli przesuwaj kondensor w górę i w dół, spoglądając na preparat, aż zobaczysz, że krawędź oświetlonego koła  (brzeg przysłony polowej) będzie ostra. Postaraj się, aby krawędzie były jak najbardziej ostre (rysunek 2).

Rys.2 Obraz mikroskopowy z ostrymi brzegami przysłony polowej.

3. Gdy masz już koło o  ostrych krawędziach, należy wycentrować jego położenie tak aby znajdował się w centrum pola widzenia. W zależności od konstrukcji mikroskopu możemy dokonać centrowania przysłony polowej za pomocą wąsów wychodzących z oświetlacza lub za pomocą centrowania kondensora. Gdy powoli przekręcasz śruby centrowania, zobaczysz, że krąg światła będzie przesuwał się po polu widzenia. Powinieneś dążyć do tego, aby okrąg znajdował się pośrodku obrazu preparatu.

Rys 3 Obraz mikroskopowy z wycentrowana przysłoną polową.

4. Po wycentrowaniu kondensora otwórz przesłonę polową, aż krawędzie koła znikną z pola widzenia (rys. 4).

Rys.4 Obraz mikroskopowy z wycentrowaną i otwartą przysłoną polową.

5. Ostatnim etapem jest ustawienie otwarcia przysłony aperturowej znajdującej się w kondensorze. W przypadku mikroskopów o długości mechanicznej tubusu mikroskopowego 160 mm, należy wyciągnąć okular i popatrzeć w głąb tubusu. Zmniejszając i zwiększając średnicę przysłony aperturowej zobaczymy jej krawędź. Należy ustawić dla danego obiektywu taką jej średnicę by zajmowała ok. ¾ pola widzenia.

W przypadku mikroskopów z korekcją na nieskończoność ( na obiektywach znak ∞) na kondensorze jest wyskalowane ustawienie przesłony. Wyskalowanie może być opisane powiększeniem obiektywu lub wartością apertury numerycznej obiektywu ( NA).

Opisane powyżej pięć kroków pozwala na uzyskanie najlepszego obrazu mikroskopowego dla Twojego mikroskopu.

Oczywiście w wyjątkowych sytuacjach, można przy obserwacji niektórych preparatów, stosować inne ustawienia przysłony aperturowej, polowej i wysokości kondensora. Ważne by dobrać optymalne warunki obserwacji dla danego preparatu, czyli dające odpowiedni kontrast i rozdzielczość obrazu, tak aby wyciągnąć szukane detale w obrazie.

Mikroskop – narzędzie diagnostyczne w weterynarii

Mikroskop to narzędzie diagnostyczne, które ułatwia lekarzom prawidłowo rozpoznać chorobę. Jest powszechnie używany w lecznicach weterynaryjnych.

Mikroskop do podstawowych badań weterynaryjnych.

Nawet sprzęt w bardzo przystępnej cenie- Genetic Pro Bino pozwoli nam znaleźć krwinki w moczu, rozróżnić rodzaj pasożyta w skórze czy w kale.

<ing alt="">
Mikroskop Delta Optical Genetic Pro Bino

Jest on polecany jako pierwszy mikroskop dla lekarza weterynarii, zwłaszcza sprawdza się przy otwieraniu nowych gabinetów, gdzie koszty inwestycji odgrywają istotną rolę.

Dla lekarzy, którzy pracują w terenie np. zajmujących się chorobami ryb lub pszczół, dobrym rozwiązaniem może być wspomniany mikroskop DO Genetic Pro Bino akumulatorem.

<ing alt="">
Mikroskop Delta Optical Genetic Pro z akumulatorem

Mikroskop do specjalistycznych badań weterynaryjnych.

Coraz więcej lekarzy praktyków szkoli się w wąskich dziedzinach medycyny weterynaryjnej. Przybywa dermatologów, hematologów, onkologów. Do uzyskania umiejętności specjalistycznych niezbędny jest mikroskop z lepsza klasa optyki, który pozwoli na obejrzenie w powiększeniu detali preparatów z krwi, zeskrobin skóry, biopsji skóry, szpiku kostnego itd.

Mikroskopami, które pokażą bardzo dobrej jakości obraz jest :

<ing alt+"">
Mikroskop ProteOne
<ing alt+"">
Mikroskop Evolution100

Znalezienie przyczyny świądu u zwierząt bywa czasem nie lada wyzwaniem. Dzięki oglądaniu preparatów odciskowych oraz zeskrobin skóry można rozpoznać, który pasożyt wywołał ten stan i wprowadzić celowane i skuteczne leczenie. Dermatolodzy wykonują też ocenę mikroskopową biopsji skóry i rozróżniają miedzy innymi procesy bakteryjne od nowotworowych.

Szczególne wymagania co mikroskopu mają onkolodzy. badania onkologiczne wymagają wysokiej klasy sprzętu mikroskopowego dającego obraz mikroskopowy o dużej rozdzielczością dużą ilością szczegółów w badanych tkankach.W tego typu badaniach sprawdzą się mikroskopy z serii Nexcope, a szczególnie mikroskop Nexcope 620, z obiektywami o długości optycznej 60mm, które pozwala na uzyskanie jasnego obrazu, o wysokim kontraście. Opcjonalnie mikroskop Nexcope można doposażyć w obiektyw 100x z immersją wodną. Obiektyw ten jest bardzo wygodnym rozwiązaniem, gdyż nie wymaga pracochłonnego czyszczenia z olejku immersyjnego, a jedynie zabrudzenia wody z soczewki czołowej obiektywu.

<ing alt="">
Mikroskop NexcopeNE620

Praktyczne znaczenie mikroskopu w weterynarii.

Badania mikroskopowe są coraz częściej dostępne w lecznicach ponieważ skracają czas oczekiwania na wynik z laboratorium. Część badań np.: diagnozowanie babeszjozy może być z powodzeniem wykonana w lecznicy, a pacjent będzie miał większe szanse na przeżycie, jeśli leczenie zostanie szybko wprowadzone. Niektórzy lekarze doszli już do takich umiejętności, że potrafią rozpoznać tą pierwotniaczą chorobę krwi również w preparatach niebarwionych. Chociaż do oceny krwi nadaje się każdy mikroskop Delta Optical, jednak im lepsze obiektywy i bardziej profesjonalna optyka, tym łatwiej i skuteczniej się pracuje. Mimo, że babeszjozę oraz anemię można już rozpoznać na DO Evolution100, to lepszej jakości będzie obraz w Nexcope620. Ten ostatni polecany jest też do oceny szpiku kostnego.

<ing alt+"">
Włosień w mięśniu (mikroskop NexcopeNE620, kamera DLT-Cam Pro 6,3MP)
<ing alt+"">
Rozmaz krwi ludzkiej (mikroskop NexcopeNE620, kamera DLT-Cam Pro 6,3MP)

Mikroskop do badań pasożytów.

Dla lekarzy, którzy potrzebują oglądać obraz trójwymiarowy, na przykład oceniając pasożyty zewnętrzne ptaków, albo badając mięso metodą wytrawiania, pod kątem obecności włośni polecamy mikroskopy stereoskopowe z serii SZ -, które dają powiększenia 7-30x, 10-45x, 8-50x.

Mikroskop SZ-430 B
Mikroskop SZ-450 T
<ing alt="">
Mikroskop SZ-630

Mikroskop weterynaryjny z kamerą.

Niektórzy lekarze weterynarii decydują się na kupno mikroskopu wraz z kamerą. Wykonane zdjęcia mogą być archiwizowane w dokumentacji pacjentów. Dzięki temu możliwe jest miedzy innymi kontrolowanie przebiegu leczenia poprzez porównywanie obrazu mikroskopowego tkanek. Do tego celu polecamy kamery z serii DLT-Cam Pro o rozdzielczości co najmniej 5MP. Obrazy uzyskane kamer można także wykorzystać w publikacjach naukowych.

<ing alt="">
Kamera DLT-Cam Pro 5MP USB 2.0

Coraz częściej lekarze weterynarii podchodzą do obrazu mikroskopowego marketingowo – kamera mikroskopowa jest narzędziem pozwalającym na pokazanie właścicielowi zwierzęcia na ekranie przyczyny choroby. Ma to niebagatelne znacznie w rozmowach z klientami i tłumaczenia im, co dolega ich pupilowi. Wyobraźnia nie zastąpi wrażenia wzrokowego. Czasami zobaczenie pasożyta, który drąży skórę psa i doprowadza do ogromnego świądu i cierpienia pacjenta, może uzmysłowić właścicielowi powagę sytuacji. Przykładem kamer podłączonych do monitora są kamery HDMI

<ing alt="">
Kamera DLT-Cam 1080HDMI USB

Więcej informacji na temat doboru kamer jest na https://blog.mikroskopia.com/wp-admin/post.php?post=1033&action=edit oraz https://blog.mikroskopia.com/wp-admin/post.php?post=1291&action=edit

https://deltaoptical.pl/

Do czego służy kondensor mikroskopu?

Kondensor mikroskopu to element optyczny mikroskopu znajdujący się pomiędzy źródłem światła a obiektywem. Zadaniem kondensora jest zapewnienie równomiernego oświetlenia preparatu.

Kondensor w mikroskopie Genetic Pro Trino.

W prostych mikroskopach edukacyjnych posiadających obiektywy o małych i średnich powiększeniach ( do 40x) kondensor najczęściej składa się z jednej soczewki umieszczonej bezpośrednio w stoliku i nie ma możliwości regulacji jej położenia względem preparatu.

Kondensor w stoliku mikroskopu DO Biolight 500.

W mikroskopach z obiektywami o dużym powiększeniu ( powyżej 40x) kondensor jest układem optyczny, składającym się z 2 soczewek. Taka budowa kondensora została opracowana przez Ernesta Abbego w 1872 roku. Kondensor Abbego umieszczony jest pod stolikiem w uchwycie kondensora, który posiada możliwość zmiany położenia kondensora względem preparatu. Dodatkowo w kondensorze znajduje się przysłona irysowa, która reguluje średnicę strumienia światła padającego na preparat. Przesłona ta nosi nazwę przesłony aperturowej i służy do dopasowywania apertury numerycznej kondensora do aktualnie używanego obiektywu. Regulacja przysłony aperturowej dokonuje się poprzez dźwignię lub pierścień. W kondensorze bardzo często znajduje się uchwyt na filtry barwne. Taka budowa kondensora jest w np. w mikroskopie z serii Genetic Pro.

Kondensor jasnego pola mikroskopu Genetic Pro.

Niektóre mikroskopy na kondensorze mają wyskalowaną aperturę dla poszczególnych obiektywów np w ProteOne, Evolution100, Nexcope NE610 i Nexcope NE620

W kondensorach mikroskopów Nexcope znajdują się specjalne otwory na wsuwki z ciemnym polem i kontrastem fazowym

Wsuwka kondensora używana w mikroskopach Nexcope (widoczne gniazdo do jasnego pola BF i gniazdo do ciemnego pola DF)
Wsuwka kondensora używana w mikroskopach Nexcope do kontrastu fazowego (widoczne gniazdo do jasnego pola oraz gniazda do kontrastu fazowego dla obiektywu 100x oraz dla obiektywów 10/20/40x)

W mikroskopach badawczych o dużym polu widzenia ( np. w mikroskopie L-1000 ) znajduje się kondensor Abbego z dodatkową uchylną soczewką czołową. W przypadku korzystania z obiektywów o małych powiększeniach ( 2x,4x) soczewka uchylna jest usuwana z toru optycznego, a przy korzystaniu z obiektywów o powiększeniu powyżej 4x soczewka jest wprowadzana w tor optyczny.

Właściwe ustalenie wysokości kondensora i średnicy otwarcia przesłony aperturowej do używanego obiektywu zdecydowanie wpływa na jakoś obrazu mikroskopowego: na jego kontrast, rozdzielczość i głębię ostrości.

Aby ustawić właściwą wysokość kondensora należy przejść przez poniższa procedurę:

1.pod wybranym obiektywem ustawiamy ostry obraz preparatu.

2. Kładziemy cienki nieprzezroczysty przedmiot np. folię aluminiową, wizytówkę na górnej soczewce oświetlacza (kolektora), tak by zasłaniał mniej więcej połowę obrazu.

3. Zmniejszamy średnicę przysłony aperturowej dźwignią lub pierścieniem regulacji przysłony aperturowej.

4. Obracając pokrętłem ustawiania wysokości kondensora wybieramy taką wysokość,
aby obserwowana przez okular krawędź obiektu na kondensorze (np. folii) była ostra
przy jednoczesnym ostrym obrazie preparatu.

Po ustawieniu prawidłowej wysokość kondensora należy ustawić właściwą średnicę światła
przysłony aperturowej. Aby zaobserwować obraz apertury (ostre brzegi przysłony aperturowej) należy wysunąć okular z tubusu okularowego i popatrzeć bezpośrednio w tubus. Najlepiej wcześniej w tym celu zmniejszyć intensywność oświetlenia. Dla każdego obiektywu należy tak ustawić średnicę irysowej przysłony aperturowej, aby patrząc w tubus okularowy po wyjęciu okularu, stanowiła ona ok.70-80% średnicy pola widzenia.

Prawidłowe ustawienie otwarcia przysłony aperturowej kondensora.

Jeśli średnica apertury kondensora jest zbyt mała, wtedy zdolność rozdzielcza jest również mała. Przysłonę otwieramy szerzej, gdy potrzebujemy oglądać preparat w niskim kontraście, z mniejszą głębią ostrości i dużą jasnością.
Opisane powyżej szczegóły budowy kondensorów dotyczą kondensorów jasnego pola w mikroskopach w układzie prostym. Na szczególną uwagę zasługują kondensory do technik kontrastowych ( ciemnego pola czy kontrastu fazowego). W przypadku kondensora ciemnego pola w centrum apertury kondensora jest umieszczony okrągły dysk, który blokuje światło ze środka pęku światła wychodzącego z oświetlacza.

W przypadku techniki kontrastu fazowego stosuje się specjalne kondensory tarczowe. Kondensor tarczowy posiada specjalną tarczę na której umieszczone są gniazda dla każdego z obiektywów z pierścieniową przysłoną stosowana w kontraście fazowym. Dodatkowo na tarczy umieszczone jest gniazdo do jasnego pola ( bez przysłon), a często gniazdo do ciemnego pola.

Kondensor tarczowy używany w mikroskopach ProteOne do kontrastu fazowego- widok od spodu (widoczne gniazda do kontrastu fazowego dla różnych obiektywów fazowych oraz gniazdo do jasnego pola)

Więcej o technice:

– ciemnego pola na https://blog.mikroskopia.com/techniki-obserwacji-ciemne-pole/

– kontrastu fazowego na https://blog.mikroskopia.com/mikroskop-biologiczny-kontrast-fazowy/

Obserwacje mikroskopowe w kropli wody – Klub Młodego Biologa on-line

Wysoce prawdopodobnym jest, że z tematem obserwacji mikroorganizmów wodnych w kropli wody spotkałeś się już w szkole podstawowej. Często jednak zakres zajęć zawężał się do wiedzy teoretycznej bądź kilkudziesięciu minut spędzonych na przygotowaniu preparatu i zajrzeniu na jedno szkiełko. Dzisiaj, dzięki powszechnie dostępnym mikroskopom edukacyjnym, świat pierwotniaków możemy obserwować w domowym zaciszu, lub przygotować takie zajęcia w swojej szkole. W tym artykule w prosty sposób przedstawimy, jak przygotować preparat z tak zwanej kropli wody, aby samodzielnie przeprowadzać obserwacje pod mikroskopem biologicznym. Przygotowanie takiego preparatu nie wymaga ostrych narzędzi i jest na tyle proste, że śmiało mogą samodzielnie wykonać go także młodzi adepci mikroskopowania.

Czytaj dalej Obserwacje mikroskopowe w kropli wody – Klub Młodego Biologa on-line

Kontrast Hoffmana

Kontrast Hoffmana jest jedną z technik mikroskopowania dzięki której możemy obserwować półprzezroczyste obiekty w preparatach biologicznych z wysokim kontrastem i wrażeniem ich trójwymiarowości. Dzięki mniejszej ilości zastosowanych komponentów jest to tańsze rozwiązanie niż kontrast DIC, jednocześnie charakteryzując brakiem efektu halo występującym w kontraście fazowym.

Czytaj dalej Kontrast Hoffmana